Home Print this page Email this page Users Online: 288
Home About us Editorial board Search Ahead of print Current issue Archives Submit article Instructions Subscribe Contacts Login 


 
 Table of Contents  
ORIGINAL ARTICLE
Year : 2016  |  Volume : 24  |  Issue : 1  |  Page : 69-73

An appraisal of antibiotic sensitivity pattern and drug utilization in burn patients


1 Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal, Udupi, Karnataka, India
2 Department of Plastic Surgery, Kasturba Medical College, Manipal University, Manipal, Udupi, Karnataka, India

Date of Web Publication12-Dec-2016

Correspondence Address:
Vijayanarayana Kunhikatta
Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal - 576 104, Udupi, Karnataka
India
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/0971-653X.195534

Rights and Permissions
  Abstract 

Aim: To analyze the antibiotic sensitivity and resistance pattern and antibiotic consumption in defined daily dose (DDD)/100 bed days (BD). Materials and Methods: Burns patients admitted from January 2013 to December 2013 were identified retrospectively from medical record department registry using the International Classification of Diseases-(ICD) Codes T 30.1-39.9. Patient demographics, total body surface area (TBSA) of burn, treatment chart, hospitalization days, and antibiotic sensitivity/resistance profile were recorded. Cumulative sensitivity/resistance pattern of isolated microorganisms against various antibiotics was calculated (in percentage) from culture sensitivity reports. Total use of antibiotics in burn patients was calculated as DDD/100 BD using antibiotic consumption calculator-WHO ABC Calc version 3.1. Results: Of total 159 burn patients, the main cause of burns in these patients was thermal (81.8%). Cefoperazone-sulbactam (54.7%) was the most frequently prescribed antibiotic followed by amoxicillin-clavulanic acid (34%). Totally, 82 bacterial isolates were obtained, among which Pseudomonas aeruginosa (31.6%) was the most common organism. P. aeruginosa was sensitive to rifampicin and erythromycin but resistant to clindamycin. The DDD/100 BD was highest for parenteral cefoperazone (40.21). Conclusion: Proper antibiogram and DDD will facilitate conceptualizing and developing drug policies for improved patient outcomes in burns.

Keywords: Antibiotic sensitivity, burns, defined daily dose in burns, drug utilization evaluation


How to cite this article:
Chauhan JR, Khare S, Lal P, Kunhikatta V, Thunga G, Nair S, Sreekumar NC. An appraisal of antibiotic sensitivity pattern and drug utilization in burn patients. Indian J Burns 2016;24:69-73

How to cite this URL:
Chauhan JR, Khare S, Lal P, Kunhikatta V, Thunga G, Nair S, Sreekumar NC. An appraisal of antibiotic sensitivity pattern and drug utilization in burn patients. Indian J Burns [serial online] 2016 [cited 2017 Sep 21];24:69-73. Available from: http://www.ijburns.com/text.asp?2016/24/1/69/195534


  Introduction Top


Burns are tissue injuries caused by heat, electricity, sunlight, chemicals, radiation, or friction.[1] Burns are classified according to depth and severity based on the body surface area. Depth is characterized by the first-, second-, and third-degree burns. Severity is based on total body surface area (TBSA).[2] The antimicrobial resistance in burn wound pathogens is a challenge for clinicians chiefly due to the emergence of various resistant bacterial strains. An infection in burn wounds is the most common cause of morbidity and results in 75% mortality.[3]


  Materials and Methods Top


A retrospective observational study on 159 patients with various degrees of burns was conducted; burn patients admitted during January 2013 through December 2013 were analyzed retrospectively from their medical records. Patients' demographics, treatment chart, and antibiotic sensitivity and resistance profile were recorded in a specially prepared case record form. Nominal data were expressed in frequency and percentage. The data were analyzed as follows: Cumulative sensitivity and resistance pattern of isolated microorganisms against various antibiotics were calculated from culture sensitivity report and reported as the percentage. Total use of antibiotics was calculated as defined daily dose (DDD)/100 bed days (BD) using the Antibiotic Consumption Calculator-WHO ABC Calc version 3.1 (WHO Collaborating Center for Drug Statistics Methodology, Oslo, Norway). Data entry and statistical analysis were carried out using SPSS version 20 (IBM Corporation, New York, USA) and MS Excel.


  Results Top


Thermal burns (81.8%) were the main cause of burns in the study population. Patients' surface area was classified based on TBSA of which the median was 23% TBSA.

Treatment of burn wound patients: Cefoperazone-sulbactam (54.7%) was the most frequently prescribed antibiotic followed by amoxicillin-clavulanic acid (34%).

Antimicrobial sensitivity/resistance pattern and antibiotic utilization pattern in burned patients

A total of 12 microorganisms were isolated from the 82 positive cultures obtained. The most common microorganism isolated was Pseudomonas aeruginosa (31.6%) followed by Klebsiella Pneumoniae (19.4%), Acinetobacter (12.3%), and methicillin-resistant Staphylococcus aureus (MRSA) (10.3%) [Table 1].
Table 1: List of microorganisms isolated

Click here to view


The sensitivity/resistance profiles of the isolated organisms

Pseudomonas aeruginosa

it was 100% sensitive to tetracycline, imipenem, linezolid, rifampicin, and teicoplanin followed by colistin (92.3%), least sensitive to aztreonam (3.7%), and highly resistant (100%) to clindamycin, cloxacillin, ticarcillin-tazobactam, and erythromycin.

Klebsiella Pneumoniae

It was highly sensitive to vancomycin (100%) and resistant to amoxicillin, ampicillin, cefepime, and ticarcillin-tazobactam (100%).

Acinetobacter

It was 100% sensitive to colistin followed by cefoperazone-sulbactam (92.8%) and netilmicin (81.8%) and 100% resistant to amoxicillin, ampicillin, cefazolin, ceftazidime, cefuroxime, chloramphenicol, piperacillin, tobramycin, cefepime, and ticarcillin-tazobactam.

Methicillin-resistant Staphylococcus aureus

It was 100% sensitive toward colistin, linezolid, rifampicin, teicoplanin, and vancomycin and 100% resistant to amoxicillin, ceftazidime, cefuroxime, piperacillin-tazobactam, and erythromycin.

Enterobacter

It was 100% sensitive to amikacin, ceftriaxone, ciprofloxacin, netilmicin, cefoperazone- sulbactam, piperacillin-tazobactam, and imipenem but 100% resistant to amoxicillin-clavulanic acid, ampicillin, cefazolin, ceftazidime, cefuroxime, cotrimoxazole, gentamicin, aztreonam, and colistin.

Proteus mirabilis

It was 100% sensitive to cefepime, colistin, imipenem, and cefpirome followed by cefoperazone-sulbactam (85.7%). It was 100% resistance toward amoxicillin, amikacin, amoxicillin-clavulanic acid, ampicillin, cefazolin, ceftriaxone, cefuroxime, cotrimoxazole, gentamicin, netilmicin, piperacillin, and tobramycin.

Escherichia coli

It was 100% sensitive to piperacillin-tazobactam, colistin, imipenem, and tetracycline. It was resistant (100%) to amoxicillin, amoxicillin-clavulanic acid, ampicillin, cefazolin, ceftazidime, piperacillin, tobramycin, aztreonam, and cefepime.

Methicillin-sensitive Staphylococcus aureus

It was highly sensitive (100%) to amikacin, ceftriaxone, colistin, tetracycline, linezolid, teicoplanin, and vancomycin and resistant (100%) to amoxicillin-clavulanic acid, erythromycin, cloxacillin.

Enterococcus

It was highly sensitive (100%) to imipenem, tetracycline, linezolid, teicoplanin, vancomycin and least sensitive to chloramphenicol, ampicillin, and gentamicin. Complete resistance (100%) to amoxicillin, amikacin, amoxicillin-clavulanic acid, cefazolin, ceftriaxone, cefuroxime, ciprofloxacin, cotrimoxazole, netilmicin, tobramycin, aztreonam, piperacillin-tazobactam, and erythromycin was observed.

Citrobacter

The species showed complete sensitivity (100%) toward ceftriaxone, cotrimoxazole, aztreonam, cefoperazone-sulbactam, piperacillin-tazobactam, imipenem and showed complete resistance (100%) to amikacin, amoxicillin-clavulanic acid, ampicillin, cefazolin, ceftazidime, cefuroxime, ciprofloxacin, gentamicin, and netilmicin.

Klebsiella oxytoca

It was highly sensitive (100%) toward amikacin, ceftriaxone, ciprofloxacin, netilmicin, cefoperazone-sulbactam, piperacillin-tazobactam, imipenem. However, it was resistant (100%) to amoxicillin-clavulanic acid, ampicillin, cefazolin, ceftazidime, cefuroxime, cotrimoxazole, gentamicin, aztreonam, colistin.

Proteus vulgaris

It was 100% sensitive toward aztreonam, cefoperazone-sulbactam, piperacillin-tazobactam, and imipenem and 100% resistant toward amoxicillin, amikacin, amoxicillin-clavulanic acid, cefazolin, ceftriaxone, cefuroxime, ciprofloxacin, cotrimoxazole, gentamicin, and netilmicin.

Total antibiotic consumption was technically quantified in DDD/100 BD. A total of 486.8 units of 31 different antimicrobial agents were used to treat burn wound infections in 2013. The utilization pattern of antibiotics (in DDD/100 BD) is shown in [Table 2] and [Table 3].
Table 2: Top ten antibiotics used in burns patients

Click here to view
Table 3: Ten least antibiotics used in burns patients

Click here to view


Parenteral cefoperazone (40.21) was the highest followed by netilmicin (33.94) and amoxicillin-clavulanate (18.48). Consumption of parenteral cefuroxime (0.04) was least.


  Discussion Top


A retrospective, observational study included 159 burns patients from the year 2013. Data from their medical records were collected and analyzed and thermal burns being the most common. Sepsis accounted for 50% of deaths in our study, echoing the results of a study by Chawla et al., which highlighted septicemic shock, primary shock, and oligemic shock as the most common causes of death in burn patients.[4]

Twelve different microorganisms were isolated from burn wound patients. Of a total of 82 positive microbial growth, the most common organism causing burn wound infection was P. aeruginosa (31.6%) followed by Klebsiella Pneumoniae (19.4%), Acinetobacter (12.3%), and MRSA (10.3%) which is similar to the study carried out by Saaiq which had a total of 95 positive microbial growths and the highest isolate being P. aeruginosa (35.29%) followed by K. pneumoniae (20.58%), methicillin-sensitive Staphylococcus aureus (18.62%), Proteus mirabilis (9.80%), Escherichia coli (6.86%), and the least being Acinetobacter (6.86%).[5]

P. aeruginosa, being the most frequent isolate, was highly sensitive to imipenem (100%) and 60% resistant to piperacillin-tazobactam, which was reported to possess a similar sensitivity/resistance profile in a study by Dash et al., showing P. aeruginosa least resistant to piperacillin-tazobactam and imipenem.[6]

P. aeruginosa is the main organism causing nosocomial infections, thus being the most frequent isolate with the highest resistance profile in our study population. A similar result reported by Ozer et al. showed that P. aeruginosa was the cause of nosocomial infection.[7]

P. aeruginosa, resistant to a wide range of antibiotics, produces plasmid-mediated beta-lactamases (e.g., cephalosporinases hydrolyze cephalosporins more readily than penicillins) that provides a robust mechanism of resistance to cephalosporins (81.2%).[8]

Resistance to aminoglycosides in P. aeruginosa (75.03%) includes plasmid-mediated resistance, due to the presence of aminoglycoside modifying enzymes, which is often observed during nosocomial outbreaks of the infection. P. aeruginosa can also modify aminoglycosides by acetylation, phosphorylation, or adenylation.[8]

Proteus vulgaris is the least common organism isolated (0.6%), which is highly resistant to amoxicillin-clavulanate and ampicillin (100%), which correlates to a study carried out by Sewunet where P. vulgaris had high resistance to amoxicillin-clavulanate and ampicillin.[9]

Antibiotic utilization pattern showed parenteral cefoperazone, a third generation cephalosporin, having the highest consumption (40.21) followed by netilmicin (33.94), amoxicillin-clavulanate (18.48). Consumption of parenteral cefuroxime (0.04) was least.

Overall consumption of the third-generation cephalosporins was more than the use of first- and second-generation cephalosporins. This was followed by the use of aminoglycosides. Of the 361 prescriptions included in the present study, the average number of antibiotics prescribed was 2.5, ranging from 1 to 8 antimicrobials, which comparable to a study by Padwal et al., in which the most prescribed group of antibiotics was found to be cephalosporins, especially third-generation cephalosporins. The average number of drugs prescribed was 5.17 with a range of 2-9 drugs and the number of prescriptions was 242 in a period of 6 months.[10]

Our study population was similar to the study done by Theron and Nel, where they concluded the beneficial role of the third-generation cephalosporins in the management of extensive burn wound sepsis.[11]

Most common antibiotics used to prevent eye infections include fluoroquinolones, mainly ciprofloxacin, which lubricates the eye and prevent infections.

Limitations of the study: The study being retrospective, use of topical antibiotics could not be quantified. Further, the comorbidities in patients, etc., were not considered.


  Conclusion Top


Antibiotic use requires the physicians to coordinate with a multidisciplinary healthcare team comprising of clinical pharmacists, microbiologists and nurses for assuring optimum antimicrobial use in burns patients. Infections are a serious problem in burns, with highly resistant strains of P. aeruginosa emerging as the commonest organism causing infection. Hospitals should constitute a surveillance system that should record burn wound infections along with resistance/sensitivity patterns. This study should be repeated periodically, and an antibiogram should be developed based on which the hospital should formulate an effective antibiotic policy.

Financial support and sponsorship

Nil.

Conflicts of interest

There are no conflicts of interest.

 
  References Top

1.
Herndon D. Prevention of burn injuries. Total Burn Care. 4th ed. Edinburgh: Saunders; 2012. p. 46.  Back to cited text no. 1
    
2.
Burns: Burns: Merck Manual Home Edition; 2014. Available from: http://www.merckmanuals.com. [Last accessed on 2014 Aug 22].  Back to cited text no. 2
    
3.
Sedat Y, Tarik Z, Nurkan T, Targut N, Yusuf Z, Gokhan M,et al. Bacteriological profile and antibiotic resistance. J Burn Wound Rehabil 2005; 26:488.  Back to cited text no. 3
    
4.
Chawla R, Chanana A, Rai H, Singh H. Clinico-pathological profile in deaths due to burns. J Indian Acad Forensic Med 2011;33:14-5.  Back to cited text no. 4
    
5.
Saaiq M. Epidemiology and outcome of childhood electrical burn injuries at Pakistan institute of medical sciences Islamabad, Pakistan. J Burn Care Res 2014;1:174-80.  Back to cited text no. 5
    
6.
Dash M, Misra P, Routaray S. Bacteriological profile and antibiogram of aerobic burnwound isolates in a tertiary care hospital, Odisha, India. Int J Med Med Sci 2013;3:460-3.  Back to cited text no. 6
    
7.
Ozer B, Tatman-Otkun M, Memis D, Otkun M. Nosocomial infections and risk factors in intensive care unit of a university hospital in Turkey. Cent Eur J Med 2009;5:203-8.  Back to cited text no. 7
    
8.
Basavraj N, Namdev MS. Antimicrobial resistance in P. aeruginosa — A review. J Med Educ Res 2012;2:1-6.  Back to cited text no. 8
    
9.
Sewunet T, Demissie Y, Mihret A, Abebe T. Bacterial profile and antimicrobial susceptibility pattern of isolates among burn patients at Yekatit 12 Hospital Burn Center, Addis Ababa, Ethiopia. Ethiop J Health Sci 2013;23:209-16.  Back to cited text no. 9
    
10.
Padwal S, Motghare V, Kulkarni M, Jadhav R, Deshmukh V. Drug utilization in burn patients admitted in a wards of a rural tertiary care teaching hospital. Int J Pharmacol Ther 2013;3:20-6. Available from: http://www.earthjournals.org/ijpt_244.pdf. [Last cited on 2015 Mar 24].  Back to cited text no. 10
    
11.
Theron EJ, Nel CJ. Treatment of septic burns with a third-generation cephalosporin (cefatriaxon). S Afr Med J 1983;64:816-7.  Back to cited text no. 11
    



 
 
    Tables

  [Table 1], [Table 2], [Table 3]



 

Top
 
 
  Search
 
Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
Access Statistics
Email Alert *
Add to My List *
* Registration required (free)

 
  In this article
Abstract
Introduction
Materials and Me...
Results
Discussion
Conclusion
References
Article Tables

 Article Access Statistics
    Viewed1264    
    Printed16    
    Emailed0    
    PDF Downloaded59    
    Comments [Add]    

Recommend this journal


[TAG2]
[TAG3]
[TAG4]